ISSUES RELATED TO SANITARY SEAWATER QUALITY MONITORING IN THE IMPACT ZONE OF COASTAL KARST SPRINGS – EXAMPLE FROM RIJEKA BAY

Darija Vukić Lušić¹, Josip Rubinić², Maja Radišić², Arijana Cenov¹, Dražen Lušić³, Jadranka Krstelj⁴ and Vladimir Mićović¹

¹Teaching Institute of Public Health of Primorsko-Goranska County, Department of Environmental Health, Krešimirova 52, 51 000 Rijeka, Croatia and University of Rijeka, School of Medicine, Department of Environmental Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia; <u>darija@zzjzpgz.hr</u>

 ²Faculty of Civil Engineering Rijeka, Radmile Matejčić 3, 51 000 Rijeka, Croatia;
 ³University of Rijeka, School of Medicine, Department of Environmental Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;

⁴Ministry of Environmental and Nature Protection, Blaža Polića 2/I, 51000 Rijeka,

Croatia

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Conclusions

INTRODUCTION

Reason

The reason why seawater quality is discussed at a carstological conference is the fact that the coastal sea and its karst hinterland are in urban areas interrelated with a number of natural and anthropogenic processes

Sea water quality

largely depends on the dynamics of interactions of such processes (<u>Elliott et al., 2014</u>)

Monitoring

Based on an example of occasional loads of microbiological sea pollution on the selected beaches in the western part of the town of Rijeka, the paper discusses the monitoring-related problems and the possibilities for improvement

- Not only for status assessment
- ➤Modelling as well→ real-time forecasting of seawater quality

For modelling purposes, the machine learning models or artificial intelligence (AI) methods were used

TIME

INTRODUCTION

GAP The main problem of the existing beach seawater quality monitoring is the fact that the information on quality becomes available only after the pollution has been detected, including a period of an analytical procedure which, according to the official reference methods, takes about two days in Croatia

➢In that way, management measures including a bathing prohibition, can be taken only once the period required for the laboratory analysis of samples has passed

➤This leads to a situation that a bathing prohibition is not imposed at a time when the beach water is polluted, but at a time when the pollution has most often already been eliminated

This TIME GAP represents a potential HEALTH RISK for beach users

to identify the pattern of occasional deterioration of microbiological status of seawater quality

the impact of coastal springs on such changes

the possibility of foreseeing such statuses

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Conclusions

Study area and problem framework

Rijeka \rightarrow industrial port & town with 150,000 inh. Western part of Rijeka \rightarrow 9 analysed seawater quality monitoring points

Study area and problem framework

Results of groundwater tracing

Karst region with very significant rainfall in the hinterland (average annual rainfall from 1600 mm in the coastal zone to > 3000 mm)
A very large number of coastal springs and submarine springs →
7 of which lie in the analysed study area

Study area and problem framework

2013

Excellent Good Sufficient Poor

County map with an overview of final assessment (2010 - 2013)

SAMPLING FREQUENCY:

➤twice a month

➢ from mid-May to the end of September

PARAMETERS:

 includes basic physical-chemical and bacteriological characteristics of seawater
 bacteriological parameters - the most significant indicators of pollution of the sea with sanitary wastewater

PERIOD OF STUDY:

▶2009-2013

during which extreme bacteriological pollution occurred twice in 2011

BATHING PROHIBITION

by a decision of the inspection
 measures were established on one beach,
 lasting for 22 days

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Conclusions

Data and methods of seawater quality analysis

Seawater quality on the beaches of the Croatian part of the Adriatic Sea is monitored according to the Regulation on sea bathing water quality (<u>OG 73/08,</u> 2008), which is harmonized with the Directive 2006/7/EC (2006) Laboratory analyses of samples include identification of the microbiological indicators of sea pollution, intestinal enterococci (**EN**) and *Escherichia coli* (**EC**) Bacteriological analyzes were performed by membrane filtration technique Isolation and identification of EN was done using the HRN EN ISO 7899-2:2000 method (2000), and for EC, a Rapid test HRN EN ISO 9308-1:2000 (2000), was used

The results are expressed as a number of colony forming units (cfu) in 100 ml of seawater

Daramatara	Water quality						
Parameters	Excellent	Good	Sufficient				
Intestinal enterococci - EN (cfu*/100 ml)	<60	61-100	101-200				
<i>Escherichia coli</i> - EC (cfu*/100 ml)	<100	101-200	201-300				

Data and methods of seawater quality analysis

Study area with remote IR satellite images of groundwater discharge locations and seawater sampling locations (3M – 3. MAJ, KI – Kantrida east, KZ - Kantrida west, VN – Vila Nora, BI – Bazen east, BZ – Bazen west, DB – Children`s hospital, BP – Bivio beach, BS – Bivio steps) and the Rječina river mouth (RU) Adapted from Landsat image dated 12.06.2002. (<u>Rubinić et al.,</u> 2007)

➢During sampling, the basic physical-chemical parameters are also monitored – salinity; seawater and air temperature; rainfall on the sampling day and on the day preceding it; the presence of clouds, visible surface seawater pollution, information about algal bloom

➢There is NO monitoring of hydrological conditions at places of groundwater discharging into the sea, but rainfall (4 stations at a distance of 2-8 km) and wind are monitored

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Methodology of analysis/modelling of bacteriological pollution of the sea

> STANDARD DESCRIPTIVE STATISTICAL ANALYSES

REGRESSION ANALYSES – correlation matrix

MODEL ANALYSES - using methods in the field of artificial intelligence (AI), i.e. by applying the machine learning tools:

 \clubsuit In classification modelling \rightarrow a model based on a DECISION TREE

✤In simulation modelling - NEURAL NETWORKS (NN) -

a multi-layer perceptron network with back error propagation

The above modelling was done using the WEKA software
 It is a computer tool based on object-oriented JAVA programming language

Methodology of analysis/modelling of bacteriological pollution of the sea

DECISION TREE

 In order to separate the elements of impact on the values of two analysed parameters (EN&EC) → complete series of data observed in the 2009-2013 period were used

NEURAL NETWORKS

 When forming a model in order to predict microbiological conditions depending on potential impact factors, data from the 2009-2011 period and from the year 2013 were used to generate the model (NN learning), with the year 2012 adopted as a year for validation model

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Conclusions

Results and discussion

 \sim

CORREL.

Results and discussion

	Station	m	Cha icrobiolo obser	racteristic gical paran ved EN/EC	ieters	Number of years with annual assessments of sea bathing water quality within a particular category of sea water quality							Results of
			Aver Max		Min	Excellent	Good		Sufficient	Po	or		
	3M	79/:	198 1	300/2500	2/3	1 (1)	0 (3)		1 (1)	3 ((0)	¦	seawater
	KI	74/:	197 1	1500/2700 0/0 0 (0) 0 (2)		2)	1 (3)	4 ((0)	1			
	KZ	33/	55 1	80/280	0/0	1 (1)	1 (4)		3 (0)	0 ((0)	(quality
	VN		25 1	80/130	0/0	3 (4)	2 (1)		0 (0)	0 ((0)	1	
	BI		35 1	00/250	0/0	3 (3)	2 (2)		0 (0)	0 ((0)	analysis by	
	BZ*		22 2	00/180	0/0	3 (4)	1 (0)		0 (0)	0 ((0)		
	DB		42 2	00/290	0/0	1 (3)	2 (2)		2 (0)	0 ((0)	individual	
	BP		17 1	30/220	0/0	5 (5)	0 (0)		0 (0)	0((0)	locations	
	BS		10 1	60/180	0/0	5 (5)	0 (0)		0 (0)	0((0)		
	* Analyses started in the year 2010									{ (2009-2013)		
			1	2	3	4	5	6	7	8	9		
1 1 1			3. Maj	Kantrida	Kantrid	la Vila	Bazen	Bazen	Dječija	Bivio	Bivio		
				istok	zapad	l Nora	istok	zapad	bolnica	plaža	Skalete		
1	3. Maj		1	0.971	0.155	0.128	0.093	0.341	0.078	-0.042	-0.015		
2	Kantrida isto	ok (0.978		0.152	0.199	0.151	0.341	0.020	-0.016	-0.016	С) Ш	: Correlation
3	Kantrida zap	ad	0.488	0.545	1	0.579	0.231	0.464	0.194	0.243	0.194	F	· · · ·
4	Pazan istal	,	0.333	0.381	0.502	0.624	0.512	0.022	0.221	0.390	0.3/9	V V	i matrix of
6	Bazen zana	d	0.250	0.301	0.230	0.054	0.583	1	0.308	0.055	0.002	풍	
7	Diečija bolni	са	0.149	0.164	0.253	0.721	0.707	0.717	1	0.287	0.178	IER	resulting
8	Bivio plaža		-0.011	0.039	0.216	0.499	0.238	0.647	0.451	1	0.783	监	LCO EN Values
9	Bivio Skalet	e	0.036	0.079	0.184	0.481	0.274	0.594	0.385	0.872			ECAEN values
			CRIJEVNI ENTEROKOKI (EN)								L		

REGR. Results and discussion

Changing average annual EC&EN values depending on salinity in particular locations

Increased microbiological pollution of the sea is inversely proportional to seawater salinity \rightarrow impact of coastal springs implied

REGR. **Results and discussion** ANALY.

EC&EN

Regression analysis of correlations between sea salinity (impact of coastal springs) and EC&EN values

DECIS. TREE Results and discussion

Presentation of the regression tree model to assess the occurrence of EC at the location of BI

The Symbols in regression formulas: I = average wind speed (m/s) R = sum of 10-day rainfall at Volosko (mm) B = air temperature H = ordinal number of the day in the year

Resulting correlation coefficient 0.78

GENERAL OBSERVATION:

Results of modelling at locations under stronger impacts of groundwater discharge, gives the trees which are less extended (often with only one regression equation), and the results are more impacted by rainfall over longer past periods

NEURAL NETWORK Results and discussion

Example of results of EN&EC modelling made for 3M beach using neural networks (NN)

➤The year 2012 was used as year for validation of modelling results

Results and discussion

Comparison of observed values of microbiological indicators and values predicted by a NN-model at station 3M for the year 2012

A very good match between the results of the observed and NN model-generated series is noticeable

Study area and problem framework

Data and methods of seawater quality analysis

Methodology of analysis/modelling of bacteriological pollution of the sea

Results and discussion

Conclusions

Conclusions

 The hydrological conditions at fresh groundwater inflows in coastal karst aquifers has a dominant impact on seawater quality/microbiological indicators

 Increased pollution events can be modelled in a satisfactory manner – artificial intelligence/machine learning methods

Conclusions

 On the basis of such models it is possible to generate predictions which might be used for operational purpose in the order to protect human health

•To obtain even better results of modeling, it is necessary to establish monitoring of hydrological conditions at coastal springs