

Integrating outcrop fracture data and pressure transient data for constructing local scale flow models of the fractured and karstic Lez aquifer, Southern France

Xiaoguang Wang¹

Supervisors:

John Cosgrove¹, Olivier Gosselin^{1&2}, Hervé Jourde³, Lidia Lonergan¹, and Gérard Massonnat²

1. Imperial College London; 2. Total SA; 3. Université Montpellier II

11th June 2014 Karst without Boundaries Trebinje, Bosnia and Herzegovina

Talk outline

- Geological and hydrogeological background
- New & existing fracture and borehole data
- Numerical modelling approach
- Preliminary simulation results
- Conclusions

Study location – the Lez aquifer

Study location – the Terrieu drill site

Terrieu site pavement fracture data – corrected from M. Jazayeri Noushabadi, 2009

Review of Terrieu site database

Well logging data:

- 1. Temperature log
- 2. Conductivity log
- 3. Borehole video (blue dots)

Well test data:

- 1. Single-borehole PIs
- 2. Interference Inter-well Perm

Fractures detected in boreholes:

- Most are steep, strata-bound
- N070 generally open
- N140 mostly calcite filled
- Karst along the bedding planes Justifies using pavement fracture data to characterize fracture network within the underlying units

The importance of karstified bedding surface and pipes

Conductive features observed in the boreholes

- 1. Some karstification along bedding planes sheet karst
- 2. Enhanced karstification at the intersections of vertical fractures with bedding planes pipe karst
- 3. Fractures (partly calcite cemented)

Karstified bedding plane

Fracture/bedding Intersection

Sub-vertical fractures

Karstification along bedding planes is very important for flow. However, the extent of karstification is unknown (channels are a min of 10 cm wide).

Integration of well test and well logging data

PI values interpreted from well tests

High PI zone indicates the main flow path at the test site; Lateral location and connectivity

Correlation of temperature log profiles

Vertical distribution and connectivity

3D spatial location of the main bedding plane can be determined

M. Jazayeri Noushabadi, 2009

Classification of well models

Three well groups at the Terrieu site

Initial step for model construction; Basis for determining hydraulic properties. Well grouping based on:

- Productivity Indices (PIs);
- Interference behaviours;
- Presence or absence of flow features;
- Proximity to main karst channel.

Group 1 – Intersects the main flow path

- Extremely high PIs; open features presenting; rapid response to pumping
- PO, P2, P8, P11, P12, P15 and P20

Group 2 – Proximal to the main flow path

- Intermediate PIs; in-filled fractures presenting
- P3, P4, P7, P9, P13 and P21

Group 3 – Far from the main flow path

- Low PIs; Delayed responses to pumping
- P5, P6, P10, P14, P17, P18 and P19

Multi-scale conceptual flow model

Generalised flow paths:

- Karstification along bedding plane generates sheet features the most important!
- Un-karstified bedding plane low permeability but good lateral connectivity
- 3. Metre-scale fractures that terminate at main bedding plane, are sites of **pipe** karst (**linear** features) that connect the boreholes to the main karst channel (intersections enhanced by dissolution) **enhanced permeability**
- Fractures away from bedding plane and matrix are dynamically combined into pseudo-matrix, providing most storage – very low permeability

Our flow model aims to capture this **hierarchical organization** of flow pathways (1, 2, 3 and partly 4)

Numerical model

Side view of the box-shaped model

The spatial distribution of the main bedding surface is determined through extrapolation using locations of in-flow features detected from well log data

Generalised distribution ~ dipping 20° towards WSW

Side view of the main bedding plane

- 1. Sheet karst is placed deterministically
- 2. Network of joints
- Two main sets (N070 and N140) are controlled by density (modified length)
- 70% N140 joints abut N070 set
- Two layers are placed above/below the bedding plane
- 3. Pipe karst bedding/fracture intersections

Assignment of hydrogeological properties to the model

Table 1 - Hydraulic properties considered in the simulation model					
	Aperture	Permeability	Porosity	Specific	Initial ana asuma
Flow region	(m)	(m^2)	(-)	storage (Pa ⁻¹)	Initial pressure
Pseudo-matrix	NA	1.00E-15	0.01	1.00E-11	2 05a±05 ₽a
Sheet karst	3.00E-03	2.00E-09	1	5.00E-07	2.950+05 Fa
Pipe karst	7.50E-02	4.70E-04	1	1.00E-06	Draduation Data
Unkarstified bedding	5.00E-05	1.00E-14	1	1.00E-08	r touuction Rate
N070 fractures	5.00E-04	1.00E-11	1	1.00E-08	
N140 fractures	1.00E-04	2.00E-12	1	1.00E-08	$100 \text{ m}^3/\text{day}$

- The major karst channel on the bedding plane ('strip') is 3 to 4 orders of magnitude more permeable than the fractures and matrix
- Low permeability for un-karstified portion of the bedding plane
- N140 set is less permeable than N070 set due to the orientation of present day maximum horizontal stress; N140 partly/completely closed
- Pseudo-matrix (fracture + matrix) is assigned with enhanced properties compared to the original background matrix
- Closed-boundary condition is assigned to all box surfaces
- Mesh created in ANSYS ICEM; simulations run in CSMP++

Preliminary simulation result – interference test

Similar clustering behaviour of the pressure curves indicates the flow model can preserve the expected hierarchical flow behaviour!

- The data range (drawdown pressure) is different;
- Misfits
- Larger dispersion of drawdown curves in simulation data;
- Some interference curves are not in the same order.

Acceptable at this stage since used simplified input; could be adjusted by sensitivity analysis and history matching.

Conclusions

- 1. The hierarchical flow behaviour at the Terrieu site can be reproduced by integrating all available static and dynamic data.
 - Compatibility between static and dynamic data
 - Validity of proposed geological conceptual model
- 2. The modelling approach presented in this work has assisted to improve our understanding of the fluid flow in a highly fractured and karstified system, and it can be **extended** to other similar applications.
 - Realistic surface-based reservoir geometries (bedding and fracture network) – Rhino + FraX/REZO3D + ICEM
 - High flexibility in hydrological properties assignments
 - High resolution numerical flow calculation CSMP++

Questions?

Your comments and questions are important to us!

Thank you!

Validation of the existence of the main flow channel

MCMC Inversion of Hydraulic Conductivity

Considering steady-state pumping data of Terrieu borehole as constraints; Adjusting conductivity values in each grid.

Binary representation

Way forward

1. Reduce the impact from uncertainties associated with the **boundary conditions** by immersing the local model within the regional model

2. Reduce the impact from uncertainties associated with **hydraulic parameter assignments** by using a MCMC algorithm to inverse the their distributions (e.g. aperture) in the fracture network

