

Protection and Sustainable Use of the Dinaric Karst Transboundary Aquifer System

CLASSICAL DINARIC KARST AQUIFER - AN OVERVIEW OF ITS PAST AND FUTURE

- Working Group 1: Želimir Pekaš¹, Boban Jolović², Dragan Radojević³ & Arben Pambuku⁴

¹ Croatian Waters, Zagreb, Croatia; ²Geological Survey of Republic of Srpska, Zvornik, Bosnia & Herzegovina; ³Geological Survey of Montenegro, Podgorica, Montenegro; ⁴Albanian Geological Survey, Tirana, Albania

and Zoran Stevanovic, Regional Consultant University of Belgrade - Faculty of Mining & Geology, Department of Hydrogeology, Belgrade, Serbia

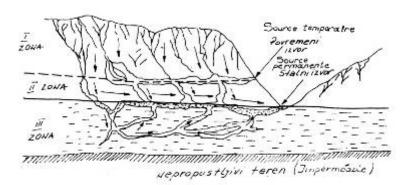
http://diktas.iwlearn.org

Task of Working group G 1

1. Defined at project document and specified in details in 2011.

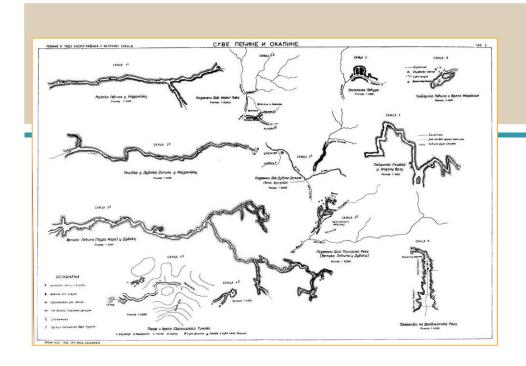
2. GIS produced Hydrogeology map in print scale 1:500.000. Source: data from maps1:100.000-500.000 of former YU and Albania

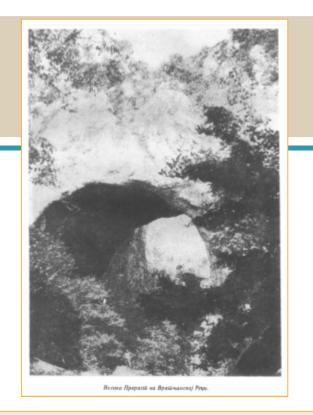
3. Delineation of study area, link with neighbour countries, problem to synchronizing coordinate systems, content and legend, GIS expert support

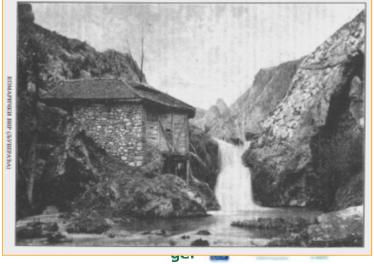

Characterization of Dinaric karst aquifer system -Regional
 Selection of TB aquifers - criteria, characterization, evaluation
 From TDA to SAP - Priority actions

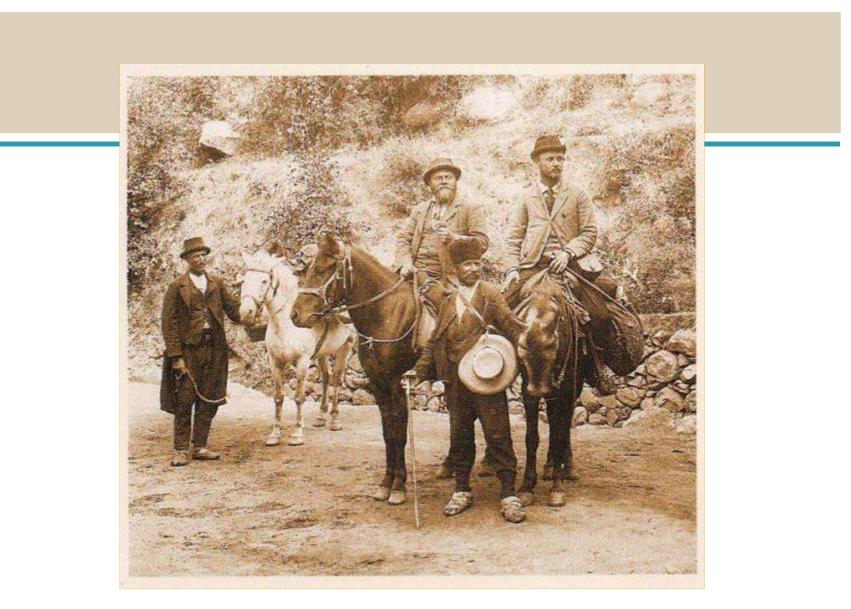
Jovan Cvijic - founder of karstology and karst hydrogeology

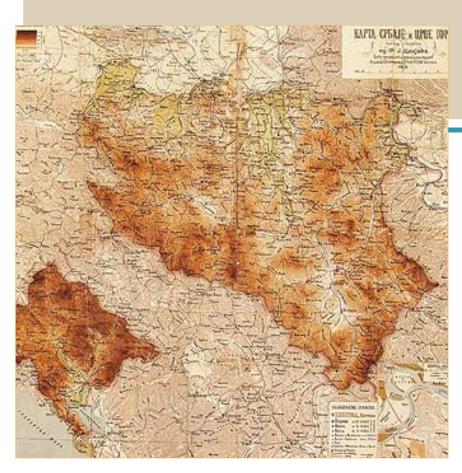
Gold medal of American good aphical Society, New 1924


COPIA. OFFF.G.S. SUMMES ADSPECTES ADDRESTED SINE IMPERADINGS. AC REGIS FRANCISCI IOSEPHI I anistis Inding Tudarens Matte La ximilianus Budinga PROMOTORS BITL CONSTITUTION Marin chine form DOCTORES PHELOSOPHILAE NOMES IT RODORES ITTLE IT PERVILENTS I fel a - L'Elig + 1 2/10-4

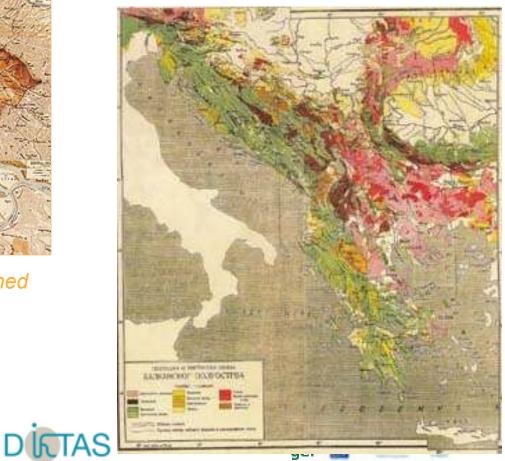

Doctoral Degree Certificate, Vienna, **1893**


Professors and graduates, Vienna University, **1893** "I was not aware of great importance that this work would have. I got only several printed copies, while the others were sent by Mr.Penck to those whom he usually sends "Geographische Abhandlungen". I first realized the considerable impression made by "Karstphänomen" by letters that I started to receive from abroad...


... So young as I was at that time, I was pleased and additionally motivated when I realized that I was considered a recognized scientist. This was even more emphasized by my new works"



Cvijić exploration, Rila Mt., Bulgaria, 1894



Map of Serbia and Montenegro designed by Cvijić, Belgrade, **1911**

Geological and tectonic sketch of Balkan peninsula designed by Cvijić

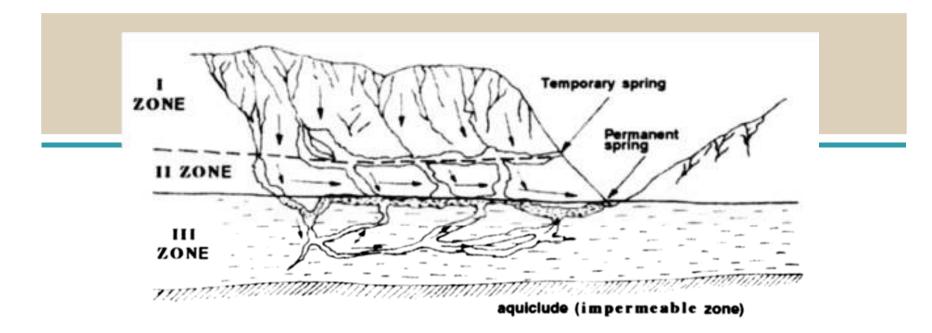
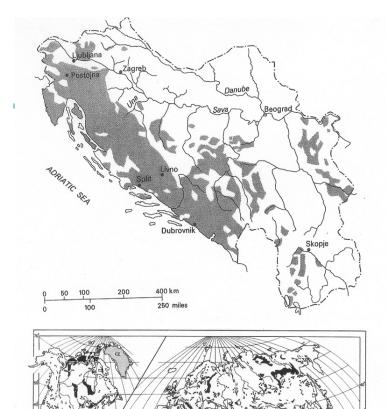


Figure 3. - Schematic hydrogeological cross-section of the karstic aquifer which lies on the aquilude substratum; the superposition hidrogeologic zones (after Cvijic hypothesis)


1. Dry zone - The karstic surface characterized by total absence of water, the cave and karstic chanels are also dry. During rain periode only vertical water percolation exists.

2. Transition zone - This zone has two characteristics: first permanent, second - periodical. In this caves and chanels exists transit of water flows to lower zone - karst aquifer

3. Karst aquifer zone - This zone represent the fully water reservoir like "Grundwaser" after A.Grund; the permanent grounwater flow with the ascendent flows along the bottom of of karstic poljes are posible.

roximate form and extent of outcrop o

• Cvijić established the regional name 'karst' as the generic name for solutional landforms and caves.

- Edouard Martel wanted to name it 'causse'.
- It is now adopted worldwide but...

From Derek Ford presentation on IAH conf. KARST 2005

Cvijić' Medals Gold medal of American geographical Society, New York, **1924**

"All of us climb on each others shoulders"

11:

Geographical and geological boundaries of Dinaric karst

The Dinaric system (Dinarides) is a long, NW-SE oriented orogenic belt, parallel to the Adriatic Sea, with numerous intermountain depressions, large karst poljes, and valleys created by perennial and sinking streams.

Its NW fringe is the Carso area around Trieste in Italy while the SW part continues deep into Albania. In between, it extends over the territories of six countries of former Yugoslavia: Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Serbia, and FYR of Macedonia.

Boundaries has been extended in Albania to the southern direction.

http://diktas.iwlearn.org

DIFTAS

Transboundary concerns

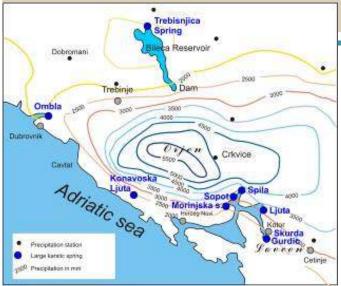
http://diktas.iwlearn.org

Abundant but variable water resources

Taken from Elsevier's book *Groundwater Hydrology of Springs* (eds. Kresic & Stevanovic)

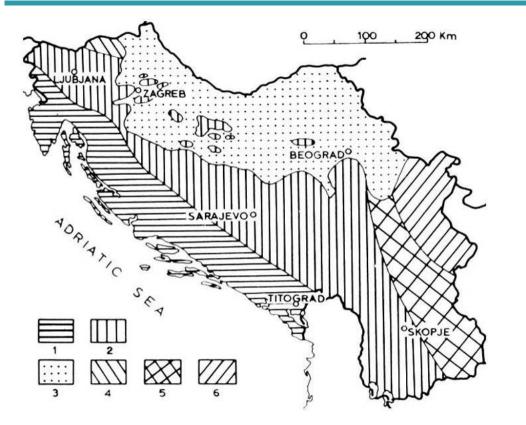
Tapping karstic springs - Traditional way of water supply since Roman time

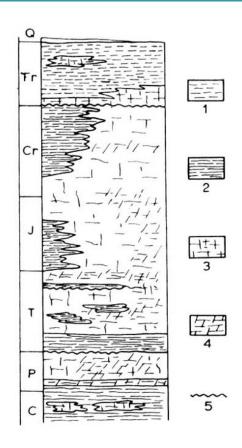
- An ancient art in the area. We all learn from Roman time experiences
- 11 long aqueducts delivered more than 13 m³/s of water to Rome from distances ranging from 16-91 km.
- Several water supply systems from that time are completely reconstructed but still use the same springs and pipeline routes.



- Along with alluvial groundwater and surface water from the reservoirs, the water from the karstic springs is the main source of water supply in the region.
- Tapping large springs is the traditional method of water supply in the region but the main concern is their unstable discharge regime.
- There are several large cities with populations of over a half of million that depend on karst aquifers and their discharge regimes. Among them are the five capitals of SEE: Vienna, Tirana, Skopje, Sarajevo, and Podgorica.
- Some areas, such as southern Montenegro characterized by a very intensive water balance: average specific yield is over 40 l/s/km².

Climate, hydrography, hydrology




http://diktas.iwlearn.org

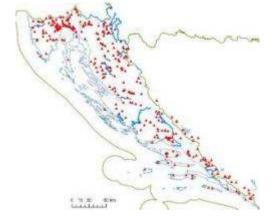
Geology and tectonics classification

Major tectonic areas of Yugoslavia (Herak, 1972).

1 = Outer Dinaric units (Adriatic and high karst); 2 = inner Dinaric and south Alpine units;

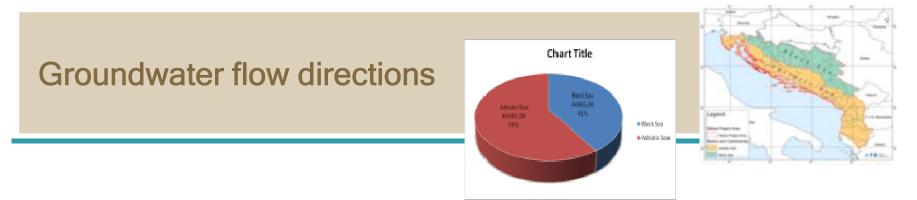
3 = Pannonian Basin; 4 = eastern Alps; 5 = Serbo-Macedonian Belt; 6 = Carpatho-Balkanian Belt.

http://diktas.iwlearn.org


Karstification and morphological features

- Cimmerian, Laramian, Pyrenean phases...
- Recent glaciaton (Pleistocene)
- Karstification intensity and depth
- Features: karren (lapies), dolines, ponors
- dry valleys, pits (jamas), caves and caverns

uvalas, poljes and karst plains as large forms

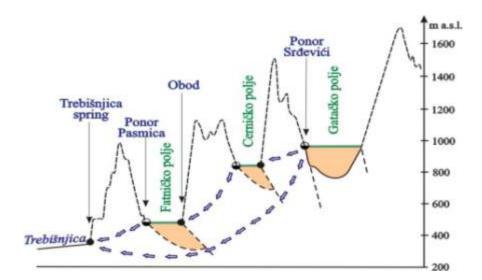

http://diktas.iwlearn.org

- Two main catchments: The first, of the External (Outer) Dinarides, is the Adriatic / Ionian Sea catchment, while the Internal (Inner) Dinarides drains into the Danube (Sava) i.e. the Black Sea catchment.
- The main river basins in the Adriatic/Ionian catchment area are the Vjosa, Seman, Drini, Buna (Bojana), Zeta, Neretva, Cetina, Krka, Zrmanja and Soča.
- Karstic groundwater from the river basins of the Tara, Piva, Vrbas, Pliva, Sana, Una, the upper course of the Kupa River and the Krka (in Slovenia) gravitates to the Black Sea catchment area.
- In eastern Herzegovina alone, 281 localities were surveyed by tracer experiments; in the catchment area of the Cetina River, 99 localities; and in the Skadarsko Lake catchment area, 77 localities.

Groundwater flow directions

Milanović P. (1976) and A. Magdalenić (1971) found that based on 380 conducted experiments, the frequency of fictive groundwater velocities in Dinaric karst is as follows: in 70% of cases from 0 to 5 cm/s; in 20% of cases 5 to 10 cm/s; and in 10% of cases more than 10 cm/s.

Vf: In Eastern Herzegovina 0.002 to 55.2 cm/s. (Milanovic, 2000); in Prespa Lake connected with Ohrid Lake the maximal values in the test in 2002 were 19 and 80 cm/s (Amataj 2005).


Difference in velocities: High / Low waters

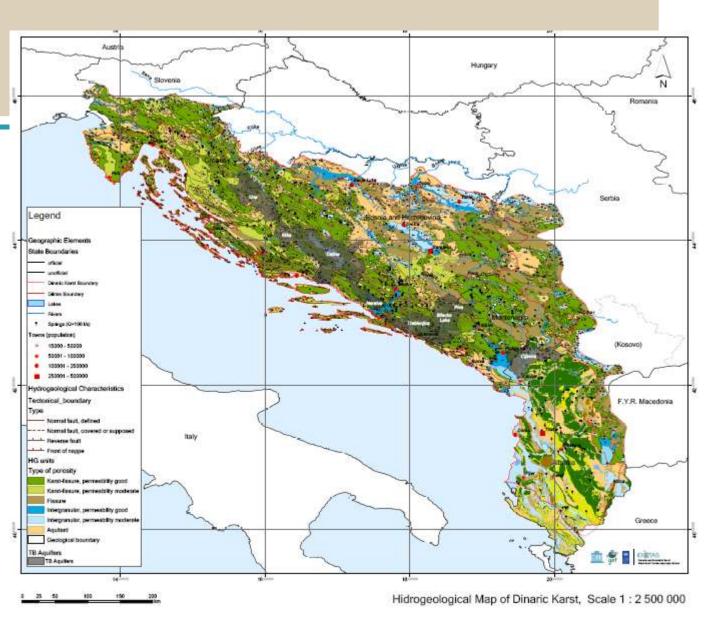
Groundwater flow directions

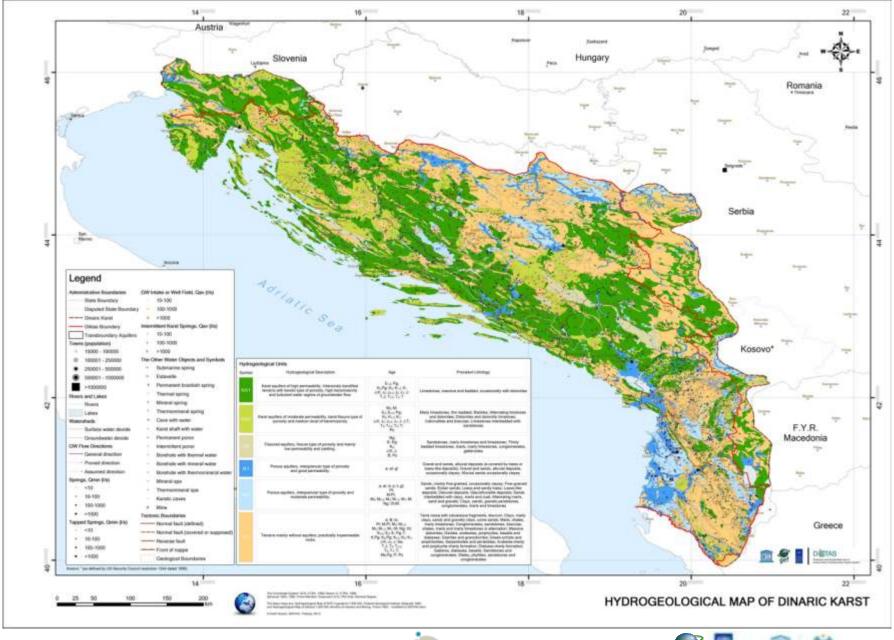
Connections between ponors and springs in South Dinaric region confirmed by dye tests (Milanović P. 2005)

Recharge/Discharge of karst aquifer

- Roughly, it can be assessed that the average infiltration rate is 60% of precipitation.
- Some authors stated that in the Dinaric region of ex-Yugoslavia there are 230 springs with a minimal discharge over 100 l/s, while about 100 springs have minimal discharge over 500 l/s
- In Albanian karst there are roughly about 110 springs with average discharge exceeding 100 l/s. Of these, 17 have discharges exceeding 1000 l/s (Eftimi, 2010).

TDA


The TDA is a fact-finding activity, meant to improve the knowledge of the project area and provide a basis for the so-called Strategic Action Plan (SAP). The main TDA activities are 1. Regional hydrogeological characterization, 2. Regional environmental and socio-economical assessment, 3. Regional assessment of legal and institutional frameworks and policies, 4. Synthesis and finalization of the Transboundary Diagnostic Analysis, 5. Local Scale activities/Case Studies


One of the main results of the regional hydrogeological characterization is the GIS based digital Hydrogeological map of the Dinaric Karst region. Its creation involved harmonization of data, classifications methodologies, reference systems, projections, semantics.

http://diktas.iwlearn.org

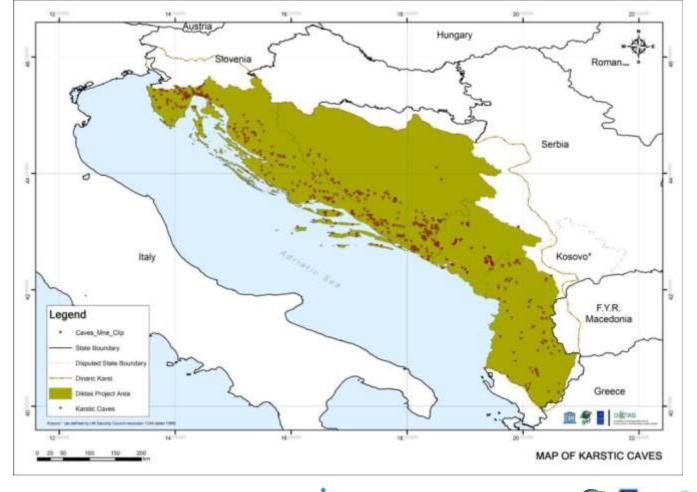
DINTAS

http://diktas.iwlearn.org

Legend	
Administrative Boundaries	GW Intake or Well Field, Qav (I/s)
State Boundary	10-100
Disputed State Boundary	- 100-1000
Dinaric Karst	⇒ >1000
Diktas Boundary	Intermittent Karst Springs, Qav (I/s)
Transboundary Aquifers	- 10-100
Towns (population)	* 100-1000
Isono - 100000	e >1000
© 100001 - 250000	The Other Water Objects and Symbols
250001 - 500000	 Submarine spring
500001 - 1000000	 Estavelle
>1000000	 Permanent brackish spring
Rivers and Lakes	 Thermal spring
Rivers	 Mineral spring
Lakes	* Thermomineral spring
Watersheds	Cave with water
Surface water devide	 Karst shaft with water
Groundwater devide	Permanent ponor
GW Flow Directions	 Intermittent ponor
General direction	 Borehole with thermal water
 Proved direction 	 Borehole with mineral water
 Assumed direction 	 Borehole with thermomineral water
Springs, Qmin (l/s)	- Mineral spa
· <10	- Thermomineral spa
• 10-100	Karstic caves
• 100-1000	* Mine
• >1000	Tectonic Boundaries
Tapped Springs, Qmin (I/s)	Normal fault (defined)
· <10	Normal fault (covered or supposed)
· 10-100	Reverse fault
• 100-1000	Front of nappe
• >1000	Geological Boundaries

http://diktas.iwlearn.org

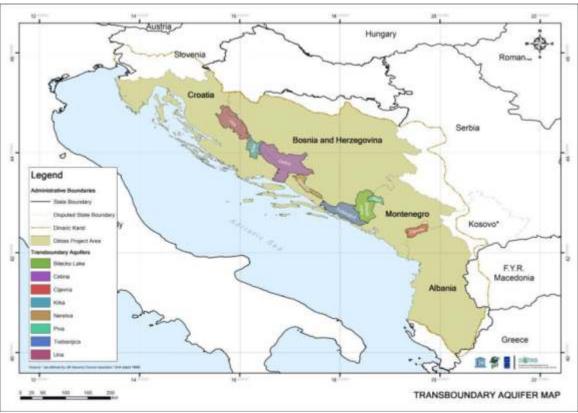
DIFTAS



Hydrog	geological Units		
Symbol	Hydrogeological Description	Age	Prevalent Lithology
KA1	Karst aquifers of high permeability. Intensively karstified terrains with karstic type of porosity, high transmissivity and turbulent water regime of groundwater flow.	E _{1,2} ; Pg; K ₂ ; Pg; K ₂ ; K _{1,2} ; K; J,K; J ₅ ; J ₂ ; J ₂ ; J ₁ ; J; T,J; T _{2,3} ; T ₂ ; T	Limestones, massive and bedded, occasionally with dolomites
KAZ	Karst aquifers of moderate permeability, karst-fissure type of porosity and medium level of transmissivity.	$\begin{matrix} M_2;M;\\ E_3;E_{2,3};Pg;\\ K_2;K_{1,2};K_1;\\ J,K;J_3;J_{2,3};J_1;J;J,T;\\ T_{3'_1}T_{2,3};T_2;T;\\ Pz \end{matrix}$	Marty limestones, thin bedded; Marbles; Alternating limstones and dolomites; Dolomites and dolomitic limstones; Calcirudites and breccias; Limestones interbedded with sandstones
FA	Fissured aquifers, fissure type of porosity and mainly low permeability and yielding .	Ng; E; Pg; K ₂ ; J,K; J; B; Pz	Sandstones, marly limestones and limestones; Thinly bedded limestones, marls, marly limestones, conglomerates, gabbroides
IA1	Porous aquifers, intergranular type of porosity and good permeability.	a; al; gl	Gravel and sands, alluvial deposits (a-covered by loess or loess-like deposits); Gravel and sands, alluvial deposits, occasionally clayey; Alluvial sands occasionally clayey
142	Porous aquifers, intergranular type of porosity and moderate permeability.	a; al; d; p; t; gl; Pl; M,Pl; M ₃ ; M _{2,3} ; M ₂ ; M _{1,2} ; M ₁ ; M; Ng; OI,M;	Sands, mainly fine-grained, occasionally clayey; Fine-grained sands; Eolian sands; Loess and sandy loess; Loess-like deposits; Deluvial deposits; Glaciofluviatile deposits; Sands interbedded with clays, marls and coal; Alternating marls, sand and gravels; Clays, sands, gravels,sandstones, conglomerates, marls and limestones
AT	Terrains mainly without aquifers; practically impermeable rocks.	a; B; ts; PI; M,PI; M ₃ ; M ₂₃ ; M ₂ ; M _{1,2} ; M ₃ ; M; Ng; OI; E ₂₃ ; E ₂ ; E; Pg; Γ; K,Pg; K ₂ ,Pg; K ₂₃ ; K ₂ ; K ₁ ; J,K; J ₃ ; J; Se; T,J; T ₃ ; T ₂₃ ; T ₂ ; T ₁ ; T; Mz,Pg; P; Pz	Terra rossa with calcareous fragments, eluvium; Clays, marly clays, sandy and gravelly clays, some sands; Marls, shales, marly limestones; Conglomerates, sandstones, breccias, shales, marls and marly limestones in alternation; Massive dolomites; Dacites, andesites, porphyrites, basalts and diabases; Granites and granodiorites; Green-schists and amphibolites; Serpentinites and peridotites; Andesite-cherty and porphyrite-cherty formation; Diabase-cherty formation; Gabbros, diabases, basalts; Sandstones and conglomerates; Slates, phyllites, sandstones and conglomerates

Database - Attribute: Caves

http://diktas.iwlearn.org


DINTAS

Selected TBAs

TAS

In total, eight TBA are selected for detailed analyses: Una, Krka, Cetina, Neretva, Trebisnjica (all shared by CRO and B&H), Bilecko Lake and Piva (B&H and MNE) and Cijevna/Cemi (MNE and ALB). Six of these TBAs belong to the Adriatic Sea catchment area and only two (Una, Piva) are part of the Black Sea basin. The TBAs comprise of in total a surface area of 12,000 km², which is around 10% of the entire study area. The surface area of individual TBA varies from 668 km² (Krka) to 3,455 km² (Cetina).

🥰 📓 🔔

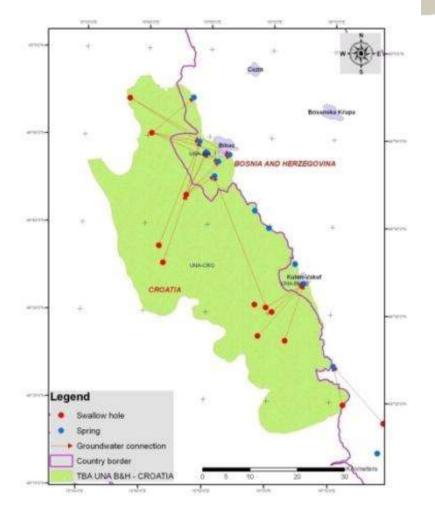
http://diktas.iwlearn.org

Selected TBAs - CRO/B&H

http://diktas.iwlearn.org

DINTAS

TRANSBOUNDARY AQUIFER B&H -CROATIA


-All relevant documents are used in process of delineation of TBA: geological and hydrogeological maps, studies, national water management strategies, RBC Reports-e.g. Cetina, RBMP e.g.Trebišnjica-Neretva and Sava etc. -Results : -delineateded TBA between B&H and Croatia -base for characterisation of TBA

DIKTAS Table for Evaluating Impact of Transboundary Aquifer (WG 1, April 2012, Podgorica)

lest area:	
iharing between the countries	1
SEOGRAPHY AND HYDROGEOLOGY	
(otal surface area (km ²)	
Surface area in Country 1. (km²)	
Surface area of karst in Country L. (km²)	
Surface area of non-karst in Country 1. (km²)	
The main catchment (1) and sub-	 (km¹) (,)
atchments (2,3)in Country 1.	2. (km ²) (,)
km ²) (River and main tributaries)	 (km²)
Vain springs (T, NT) and their	1. (T) (0.8/0.25/0.055)
nax/ay/min discharges in Country 1	2. (NT) (0.45/0.15/0.03)
Main rainfall gauging station in	1. (822 mm)
Country 1 (av. annual sum in	2. (750 mm)
nm) and total average sum	I: (810mm) equivalent to x 10 ^e m ³ / an.
Surface area in Country 2. (km ²)	
iurface area of karst in Country 2. (km²)	
Surface area of non-karst in Country 2. (km²)	
The main catchment (1) and sub-	1 (km ²) (,)
atchments (2,3_)in Country 2.	2 (km²) (,,)
km²) (River and main tributaries)	3 (km ²)
Main springs (T, NT) and their	1 (T) (0.8/0.25/0.055)
nax/av/mindischarges in Country 2	2 (NT) (0.45/0.15/0.03)
Main rainfail gauging station in	1 (822 mm)
Country 2 (av. annual sum in	2 (750 mm)
mm) and total average sum	 (810mm) equivalent tox 10⁶ m³ / an.
Seneral assessment of	
troundwater reserves in karst in country 1 (in 10 ^e m ³ / ap)	

PRESSURES	
rnessones	
Main cities in study area and	1.
population (in 000) in Country 1.	2.
Main cities in adjacent area and	1.
population (in 000) (dependent	2
on water resources) in Country 1.	3.
Main activities in study area of Country 1	
Main registered water pollutants in Country 1	
Water demands per sectors in	Drinking:
Country 1 (in m [#] /s):	Small industry: Agti:
	Others (specify):
	1010-1010-000-017-00-1000-
Water demands of dependent	
eco-systems in country 1 (in 10 ^e m ³ /an):	
Main cities in study area and	1. 2.
population (in 000) in Country 2.	3.
Main cities in adjacent area and	1
population (in 000), (dependent	2.
on water resources) in Country 2.	3.
Main activities in study area of Country 2	
Main registered water pollutants in Country 2	
Water demands per sectors in	Drinking:
Country 2(in m [*] /s):	Small industry:
	Agri
	Others (specify):
Water demands of dependent	
eco-systems in country 2 (in 10 ^e	
m*/ani:	
ATER RESOURCES	
VAILABILITY	
eneral assessment of total	
roundwater reserves in karst in	
ountry 1 (in 10° m3 / an)	
eneral assessment of available	
roundwater reserves in karst in	
puntry 1 (in $10^4 \text{ m}^2/\underline{a}0$) (total-	
ep.eco-systems)	
eneral assessment of total roundwater reserves in karst in	
ountry 2 (in 10 ⁴ m ² / an)	
eneral assessment of available	
roundwater reserves in karst in	
ountry 2 (in 10 ⁴ m ² / an) (total-	
ep.eco-systems)	

TRANSBOUNDARY AQUIFERS – TABLE FOR EVALUATING IMPACT OF TRANSBOUNDARY AQUIFERS – TBA UNA (CROATIA-B&H) GEOGRAPHY AND HYDROGEOLOGY

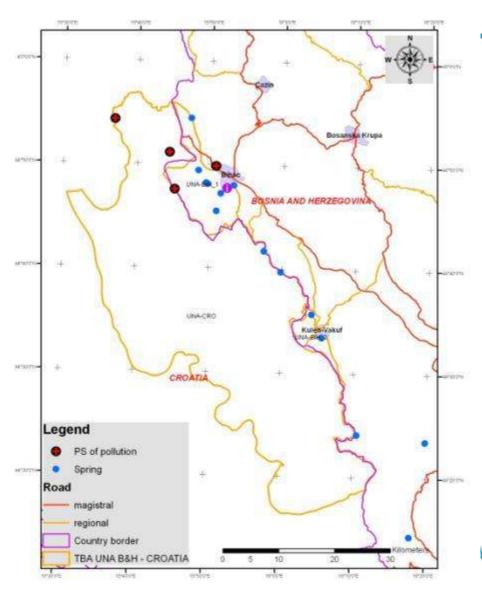
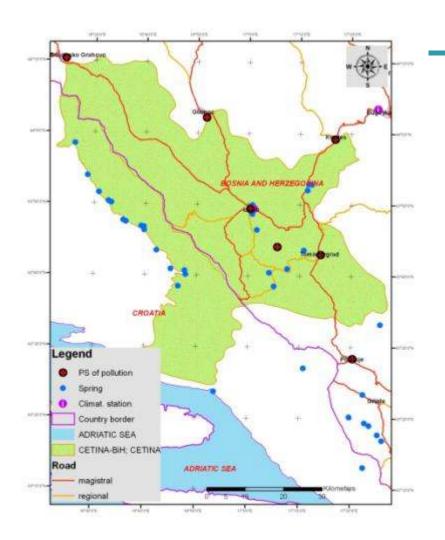

DIKTAS

Table for Evaluating Impact of Transboundary Aquifer

Test area:	UNA	
Sharing between the countries:	1.Bosnia and Herzegovina 2.Croatia	
GEOGRAPHY AND HYDROGEOLOGY		
Total surface area (km²)	1750	
Surface area in Country 1. (km ²)	168	
Surface area of karst in Country 1. (km²)	136	
Surface area of non-karst in Country 1. (km²)	32	
The main catchment (1) and sub-	1. Una	
catchments (2,3) in Country 1.	2. Ostrovica	
(km ²) (River and main tributaries)	3. Klokot	
Main springs (T, NT) and their	 (T) Klokot (4.4/14/70) 	
max/av/min discharges in Country	 (T) Ostrovica (0.789/3.71/12) 	
1 (m³/s)	 (T) Privilica (0.03/-/2) 	
	 (T) Toplica-Klisa (0.06/-/1) 	
	 (NT) Dobrenica (0.23/0.61/5) 	
	 (NT) Ilijića vrelo (0.1/-/-) 	
	(NT) Panjak (0.005/-/0.4)	
	 (NT) Bistrica (0.015/-/0.1) 	
	9. (T) Žegar (0.006/-/1)	
	10. (NT) Đakulin-Loskun (0.18/-/4.8)	
	11. (NT) Crnoć-Nebljusi (1.2/-/-)	
	12. (NT) Draga (0.03/-/0.5)	
Main rainfall gauging station in	1. Bihać (1308 mm)	
Country 1 (av. annual sum in mm)		
and total average sum	Σ: 1308 mm equivalent to 220 × 10 ⁶ m ³ / an.	

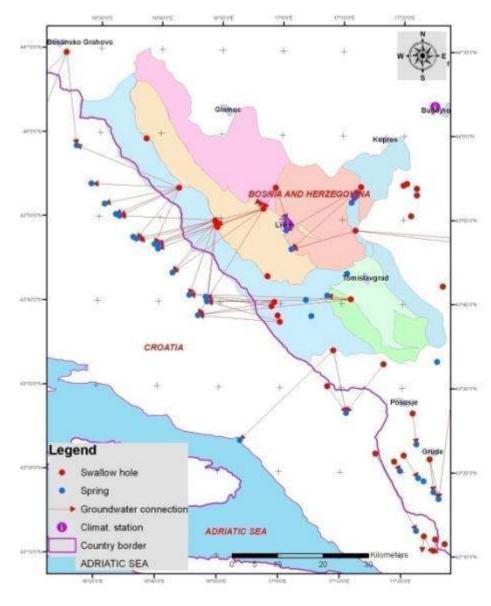

TRANSBOUNDARY AQUIFERS – TABLE FOR EVALUATING IMPACT OF TRANSBOUNDARY AQUIFERS – TBA UNA (CROATIA-B&H) PRESSURES AND WATER RESOURCE AVAILABILITY

PRESSURES	
Main cities in study area and population (in 000) in Country 1. Main cities in adjacent area and population (in 000) (dependent on water resources) in Country 1.	1. Bihać (70) -
Main activities in study area of Country 1	1. Industry 2. Forestry
Main registered water pollutants in Country 1	Destroyed military installations Wastewaters Unregulated waste disposals Traffics
Water demands per sectors in Country 1 (in m ³ /s):	Drinking: 0.5 Small industry: 0.01 Agri:- Others (specify):-
Water demands of dependent eco –systems in country 1 (in 10 ⁶ m ³ / an):	230

WATER RESOURCES AVAILABILITY	
General assessment of total groundwater reserves in karst in country 1 (in 10 ⁶ m ³ / an)	770
General assessment of available groundwater reserves in karst in country 1 (in 10 ⁶ m ³ / an) (total- dep.eco-systems)	540
General assessment of total groundwater reserves in karst in country 2 (in 10 ⁶ m ³ / an)	
General assessment of available groundwater reserves in karst in country 2 (in 10 ⁶ m ³ / an) (total- dep.eco-systems)	
Main concerns (list)	-sanitary protection zones for drinking water sources -undefined problem of possible presence of PCBs in springs use for water supply of Bihać region -

TRANSBOUNDARY AQUIFERS – TABLE FOR EVALUATING IMPACT OF TRANSBOUNDARY AQUIFERS – TBA CETINA (CROATIA-B&H) GEOGRAPHY AND HYDROGEOLOGY

DIKTAS


Table for Evaluating Impact of Transboundary Aquifer

Test area:	CETINA	
Sharing between the countries:	1.Bosnia and Herzegovina 2.Croatia	
GEOGRAPHY AND HYDROGEOLOGY		
Total surface area (km²)	3442	
Surface area in Country 1. (km ²)	2450	
Surface area of karst in Country 1. {km²}	1741	
Surface area of non-karst in Country 1. (km²)	709	
The main catchment (1) and sub- catchments (2,3) in Country 1. (Im ²) (River and main tributaries)	 Cetina (2340 km²) <u>Šuica</u> (730 km²) Bistrica <u>Sturba</u> <u>Žabljak</u> <u>Ričina</u> <u>Miłač</u> Jaruga 	
Main springs (T, NT) and their max/ax/min discharges in Country 1 (m ³ /s)	 (T) Duman (0.600/3.60/24.13) (T) Žabljak (0.140/2.06/4.96) (NT) Sturba (0.9/4.48/9.50) (NT) V. Stržanj (0/-/-) (NT) M. Stržanj (0/-/-) (NT) V. Stržanj (0/-/-) (NT) Volarica (0.11/-/-) Omin 4+5+6=0.11 Ogav 4+5+6=2.29 (T) Ostrožac (0.04/0.21/-) (NT) Ručina (0/9/>60) 	
Main rainfall gauging station in Country 1 (av. annual sum in mm) and total average sum	 Glamoč (1420 mm) Livno (1140) Tomislavgrad (1295) Kupres (1204) E: (1265 mm) equivalent to 3100 x 10⁶ m³/ an. 	

TRANSBOUNDARY AQUIFER CETINA GROUNDWATER BODIES IN B&H

Test area:	CETINA					
Sharing between the countries:	1.Bosnia and Herzegovina 2.Croatia					
GEOGRAPHY AND HYDROGEOLOGY						
Total surface area (km²)	3442					
Surface area in Country 1. (km ²)	2450					
Surface area of karst in Country 1. {km²}	1741					
Surface area of non-karst in Country 1. (km²)	709					
The main catchment (1) and sub- catchments (2,3) in Country 1. (Im²) (River and main tributaries)	 Cetina (2340 km²) Šuica (730 km²) Bistrica Sturba Žabljak Ričina Milač Jaruga 					
Main springs (T, NT) and their max/ <u>ax</u> /min discharges in Country 1 (m ³ /s)	 (T) <u>Duman</u> (0.600/3.60/24.13) (T) <u>Žabljak</u> (0.140/2.06/4.96) (NT) <u>Sturba</u> (0.9/4.48/9.50) (NT) V. <u>Stržanj</u> (0/-/-) (NT) M. <u>Stržanj</u> (0/-/-) (NT) <u>Volatica</u> (0.11/-/-) O_{min} 4+5+6=0.11 <u>O_{ani}</u> 4+5+6=2.29 (T) <u>Ostrožac</u> (0.04/0.21/-) (NT) <u>Rična</u> (0/9/>60) 					
Main rainfall gauging station in Country 1 (av. annual sum in mm) and total average sum	 Glamoč (1420 mm) Livno (1140) Tomislavgrad (1295) Kupres (1204) (1265 mm) equivalent to 3100 x 10⁶ m³/an. 					

Cetina case example

- The majority of data on spring yields is from the period before 1990. These data generally consist of minimum and maximum spring yield data based on investigators' estimates during different investigation works and of a relatively small number of occasional measurements in springs.
- There is no monitoring of groundwater level fluctuations in the area of this transboundary aquifer.
- Only three springs on the territory of Croatia are included in the national groundwater quality monitoring network.
- The estimated surface of the TBA Cetina is 3454 km², of which 2462 km² (71.3 %) located in Bosnia-Herzegovina and, and 992 km² in Croatia.
- Tapped amount of groundwater for water supply in B&H is 0.2 m³/sec and about 0.27 m³/sec (without tapped surface water from Cetina) in Croatia.
- In general, it can be stated that the available groundwater reserves within the TBA Cetina are very large in relation to the current needs.

Neretva TB aquifer

- The estimated surface of the TBA Neretva is 638 km², of which 354 km² (55.5%) is located in Bosnia-Herzegovina and 284 km² in Croatia.
- The available groundwater reserves are approximately 11 m³/s. The ecologically minimum acceptable flow is taken as the minimum spring discharge. Its values for the springs are the total of 3.82 m³/s.
- The tapped amount of groundwater for water supply in Bosnia-Herzegovina is 0 m³/s and about 0.43 m³/s in Croatia (maximum allowed amount of tapped water under the concession contracts is 0.63 m³/s).
- The total amount of tapped groundwater within the TBA Neretva is about 2% of the groundwater reserves considering the average spri in comparison with the minimum spring discharges.

Q _{aver} (m ³ /s)	Tapped groundwater (m ³ /s)	Ratio Q _{avail} /Q _{tapped} (%)	Q _{min} (m ³ /s)	Tapped groundwater (m ³ /s)	Ratio Q _{min} /Q _{tapped} (%)	
11	0.43	3.9	3.82	0.43	11.25	

http://diktas.iwlearn.org

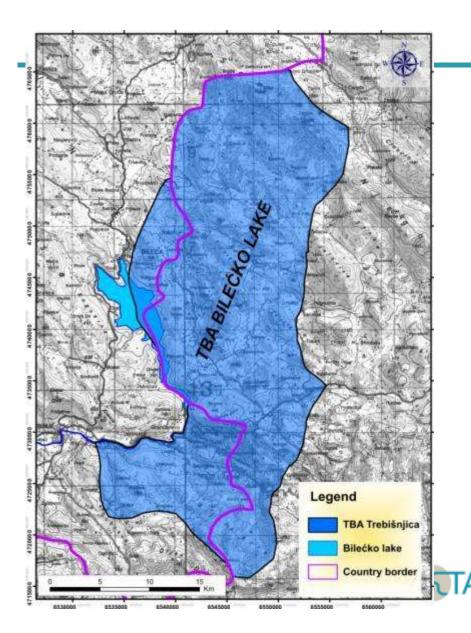
TRANSBOUNDARY AQUIFER TREBIŠNJICA GROUNDWATER BODIES AND ESTIMATED AVERAGE TRANSBOUNDARY GROUNDWATER FLOW FROM B&H TO CROATIA

RIVER AND ITS MULTIPURPOSE HYDRO SYSTEM Protection and Sustainable use of the Dinaric Karst Aquifer System

Fadgetale	PERMIT			110-11			11.11.1	114.001	1.	15-31.5		in Name's	1		12.0
evinits.	1	1	10	14	- V -	1.61	1.4	413	12	X	20	201	sim (am)		1195.35
7 (an)		1.1		1.1		1.1			11.1				1930	Contraction of the local diversion of the loc	
nontu	. 1	п	m	14	- W -	V1	All	. 9(2	DE.	x	30	321	Art arroal (m ² /e)	Min annal(m ³ n)	100
(m ² %) (m ² %) (mbis				-			1	-	-				6.5		
6(m ¹ /6)													25.00	4.30	725.33
Ontia -													23-58	439	725.53
alling (allin													134	1.04	8.17
1		-		-	-			-	-		-		705		471.14
	1	11	111	1.8	W.	VI	411	ALL	121	X	20	321	state (meta)		
. F.							1.1						614		102.31
46.0	_			_									134		35.63

Free land to be a land

- presignation (defined by polyeter)
- ratics water inflow into the cathment
- Q3 total average springflow of the main springs of 3 sub-catchments
- Que surface runoff (Sg on Fig. 15)
- $L = -\inf \lim \lim_{t \to \infty} \lim_{t \to \infty} (\hat{\mathbf{x}} + \mathbf{Q}_2 = (\hat{\mathbf{r}} + \mathbf{I}_2) (\hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_{10}))$
- E response pratice (real, calculated by empirical Thermitowaite formula)
- Q2 submaface outflow ("sovishle" groundwates dramage below surface, from deeper aquifer parts)


_				Gi	round	twate	r Bal	ance a	nd Re	eserv	es of	Omb	la		
Groundwate	r Reier	TWES .	10-0-0			1	110-322						241-222		
	1	3	ш	14	ų	Ψt	AII	VIII	DC	×	30	301	Av annol. (m ³ /d)	Maxmon annual(m ³ /z)	5145 10 ⁶ m
Sta	_	_			-	_						-	23.00	4 30	725.3
			(imi)			11	(m)								0
			*				en (m)				WE.		Dian	PHINON (HER)	Quest on (101774)
no: (a)			1.85				00				015		192.8x10 ⁶ m ³	1.46 m10 ⁴ m ³ 0.3 m10 ⁴ m ³	0.061
RQ4 61			0.1			1	00			0	02.		60 th x10°m3	0.01	
															0.072
	1	п	ш	14	v	VI	VII	VIII	TX.	X	XI	201	Av. annoal (m ⁵ /s)		
- And (ta)					-								18.70		
Contraction of the local division of the loc			Distant	Onlie (dan +	cian					6		-	1 10 10 T		
Dan kanal Man kanal Mati	18.70 m ¹ /s (589.72 x10 ⁴ m ²)				67%										
	1	- H	m	14	V.	VI	VII	AIII	IX	X	XI	201	Av. sonnal (m ⁵ /s)	Man samosi (m ³ /r)	tiff m
Daniel			1		-								0.180		5.67
- STATES			20	(10 [#] m ²)	1		1		0.0	n ^{1/4} 0					
Digate inter		0.1103	5.71	all ⁶ m ²					01	10			1		
Can	- 5	71509	.72	Landar			-	195					1		

Total reserves Quality (m² n): 18-70

Question match (m¹x) 3.5 (in case of aquifer regulation and over pumping for vertain period of time throughout the year)

II TRANSBOUNDARY AQUIFER B&H - MONTENEGRO

DIKTAS

Table for Evaluating Impact of Transboundary Aquifer

Test area:	BILECKO LAKE
Sharing between the countries:	1. Montenegro 2. Bosnia and Herzegovina
GEOGRAPHY AND HYDROGEOLOGY	
Total surface area (km ²)	696
Surface area in Country 1. (km ²)	540
Surface area of karst in Country 1. (km²)	506
Surface area of non-karst in Country 1. (km²)	34
The main catchment (1) and sub-	 Trebišnjica (540)
catchments (2,3,) in Country 1. (km ²) (River and main tributaries)	2. <u>Sušica</u> (25)
Main springs (T, NT) and their max/ay/min discharges in Country 1 (m ³ /s)	1
Main rainfall gauging station in	1_ (??? mm)
Country 1 (av. annual sum in	2. (???mm)
mm) and total average sum	 (??? mm) equivalent to ??? x 10⁸ m⁸ / an.
Surface area in Country 2. (km ²)	156
Surface area of karst in Country 2. (km ²)	124
Surface area of non-karst in Country 2. (km ²)	32
The main catchment (1) and sub-	 Trebišnjica (129 km²)
catchments (2,3,)in Country 2.	 Sudica (27 km²)
(km ²) {River and main tributaries}	
Main springs (T, NT) and their	 Dejanova pećina (T) - submerged
max/ax/min discharges in	 Nikšićka vrela (NT) – submerged
Country 2	 Cepelica (NT) – submerged
	Q _{min} 1+2=2.0; Qav 1+2+3=41; Q _{max} > 800
	 Qkp (T) – submerged (0.5/4/40)
Main rainfall gauging station in	1. <u>Bileća (1550 mm)</u>
Country 2 (av. annual sum in	Trebinje (1780 mm)
mm) and total average sum	Σ: (1665 mm) equivalent to 260 x 10 ⁶ m ³ /an
General assessment of	
groundwater reserves in karst in country 1 (in 10 ⁶ m ³ / an)	1419

OUTPUT 7

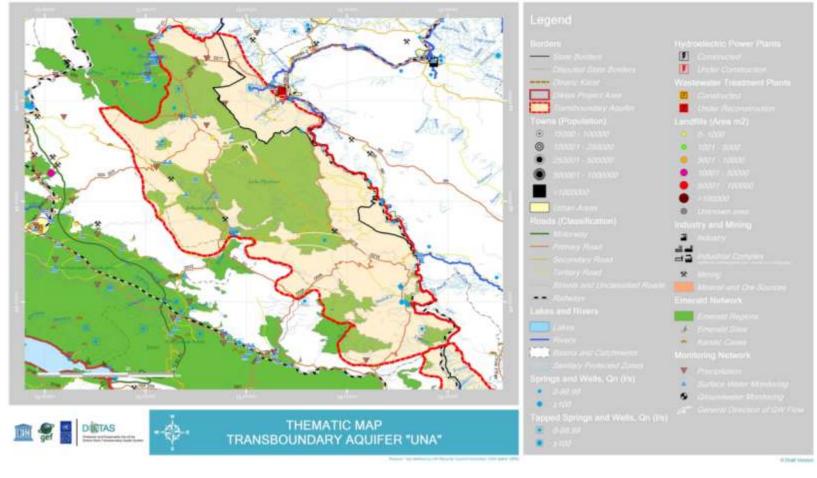
A Strategic Action Program (SAP) for the DIKTAS, and National Implementation Plans, elaborated and adopted by the country at high ministerial level

The Strategic Action Program is a regional, non binding document crystallizing the commitment of the four countries to undertake a series of agreed actions. The SAP will be translated into SAP National Implementation Plans (NIPs).

PRIORITY ACTION - Harmonisation of sanitary protection zones

				3		B&H		MONTENEODO		
20	ON E		CROATIA		Re p. of Srps ka ¹	Fed	eration ⁴	MONTENEGRO	ALBANIA	
	IA		min 10 n	า	7 days	mi	n 25 m	min 10 m	immediate	
	IB		flooding zo	on e	(min 50 m)	(extrei	mel y 10 m)		protection area ²	
	H	1 day	>3cm/s	inn er part of the catch men tarea (hyd rological) ²	90 d ays (min 250 m)	1 day	are a f whice		close protection are a2	
	II	1 - 10 days	1 - 3 cm/ s	main part of the catchment area ²	180 d ays (min 200 m o ut of zo ne	1 - 10 days	extremely	complete	remote protection area ²	
	v	10-20 days (< 20 l/s) 20-40 days (20-100 l/s) 40-50 days (>100 l/s)	extre mel y: <1 cm/s	co mpl et e	no	со	mplete mentarea	no	no	
RESER	VATION	zone of ac	cumulation	and retention	no		no	no	n o c ri te ria	

PRIORITY ACTION - Remediation - example TBA Una

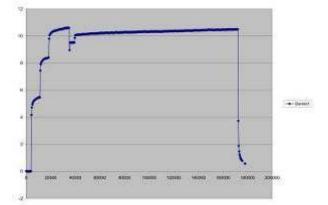

 During the war period numerous civil and military facilities, with polychlorinated biphenyls (PCB), had been destroyed. One of these facilities is the former military airport Željava, located at the border between Croatia and Bosnia and Herzegovina (north-western part of Bosnia and Herzegovina). The destroyed former military airport Željava is built on and within (underground facilities) very karstified limestones of the Cretaceous age. Connections between numerous swallow holes located in wider area of the airport and springs in Bihać area (the most important spring is Klokot) are certainly proved by numerous dye tests in the past.

PRIORITY ACTION - WWTP implementation example - TBA Una

http://diktas.iwlearn.org

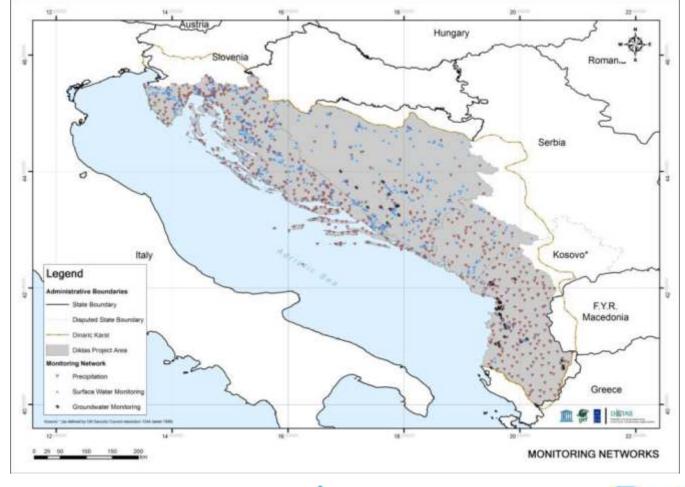
PRIORITY ACTION -- GW Monitoring (Weak point)

- **Croatia:** Characterization of GW bodies completed; Monitoring is taking place in accordance with EU WFD (Hrvatske Vode responsible).
- **B&H:** Characterization of GW bodies is on-going; no defined methodology for GW status/risk assessment.
- Albania: Preliminary characterization of GW bodies performed within CEMSA project. Currently, characterization undertaken by Albanian geological Survey (scale 1:200 000).
- **Montenegro:** Characterization of GW bodies firstly made in 2005 (ICPDR), a new one is taking place; Not yet established methodology for GW status/risk assessment.



Monitoring is crucial for GW sustainable use and

management

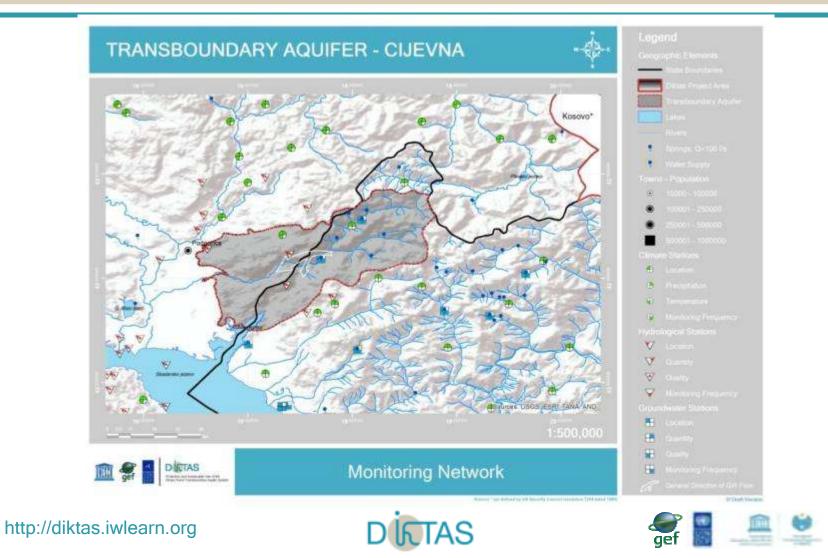

U	Y	W	×	Y .	2	**
RedaiBro	Daten	Viene	Apsolution		Konvezĝa	
	30-144-00	10 44 01	1m) 0.28	34	ра — — — — — — — — — — — — — — — — — — —	
1	30-Jan-00	10.50.01	16.39	360	0	
2	30-145-00	10:55:01	-164	720	0	
	SD-Jan-OD		- 84	1080	0	
4		11:09:01	15.11	144)	0	
5		11 14 01	16.41	1800	0	
	10-Jan-00	11 20:01	(6,23	2160	0	
1		11 26 01	16.41	2820	0	
	30-Jan-00	11:32:01	16.41	2000	0	
9	30-Jan-00 30-Jan-00	11 44 01	14.01	3240	0.01	
	30-Jan-00	11.50.01	15.4	3960	.0.01	
12			164	4320	0	
	30-Jan-00		11.24	4680	4.17	
11		12.08.01	10.68	5040	4.73	
15	30-Jan-00	12.14.01	10.46	5400		
86	30-Jac-00	15:30.01	10.37	5780	5.04	
17		12.29.01	10.29	6120	6.12	
18	30-Jan-00		10 23	6490	6.18	
19		12:30:01	10.17	6040 7200	6.24 5.26	
20					ATESECO SP	
		7387 1300		er junity		
7363	1-Min-00		0.02	2545960	16.39	
1364	1-Mit-00	3.08.01	0.02	2660320	15.39	
7365	1-Min-00	3:14:01	0.02	2650600	16.39	
7366	1-Mai-00	3.29.01	0.02	2651640	16.39	
7367		3:25:01	0.02	2051400	15.39	
7368		3.38.01	0.02	2651760 2652120	16.39	
1303		3,30.01	0.02	2652480	16.39	
1371	1-Ma-00	3 50 01	0.02	2622643	16.30	
7372		3 56 01	0.02	2663200	15.00	
7373	1-Mar-00	4 02:01	0.01	2653560	54	
7374	1-May 00	4.00 01	0.01	2653620	15,4	
1375		4:14:01	0.01	2654280	54	
7376	1-Ma+00	4:20:01	0.01	2654640	15.4	
1377	1 Mar-00	4 26 61	0.01	2655000	54	
7378	1-Mar-00	4.32.01	0.01	2555360	16.4	
7379	1-Mar-00 1-Mar-00	4:38:01	0.01	2655720	54	
7381	1 Mar 00	4.50.01	0.01	2658443	154	
1,301	1 War 00	4,50,01	.0.05	2006-041	10.4	

	DIVER
	Senal no
1	Communication: O >> O CONI • CONNECT
1.1	er State Temperature: Preasure: Preasure: Preasure: Depth; Depth; Preasure:

DINTAS

Database - Monitoring groundwater sites (permanently and sporadically observed)

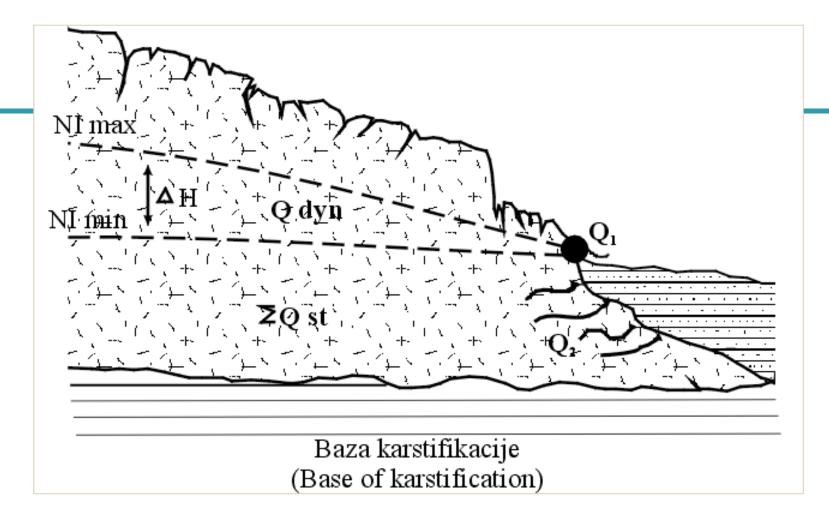
http://diktas.iwlearn.org


Recommendations for GW monitoring

- The WFD does not specify the minimum duration or frequency of surveillance monitoring. Operational monitoring, however, must be conducted at least once a year, during the interval between surveillance monitoring cycles.
- WFD the following core set of determinants must be monitored on all GW bodies: dissolved oxygen, pH-value, electrical conductivity, nitrate, ammonium,
- As for the transboundary groundwater bodies, beside the core set of parameters they shall also be monitored for those parameters which are relevant for the protection of all of the uses supported by the groundwater flow.
- ICPDR recommends that temperature and a set of major (trace) ions should also be monitored.

Thematic maps of TBAs - Cijevna/Cemi

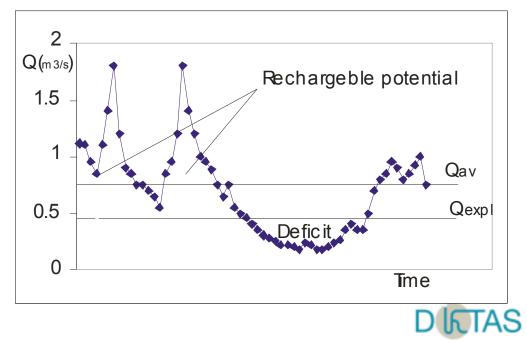
PRIORITY ACTION -- Managing Aquifer Recharge and Discharge



Main Objective of MAR: *Managing aquifer* recharge (MAR) of certain selected sources will arise awareness of local water managers and communities of advantages of aquifer control and sustainable utilization of tapped groundwater.

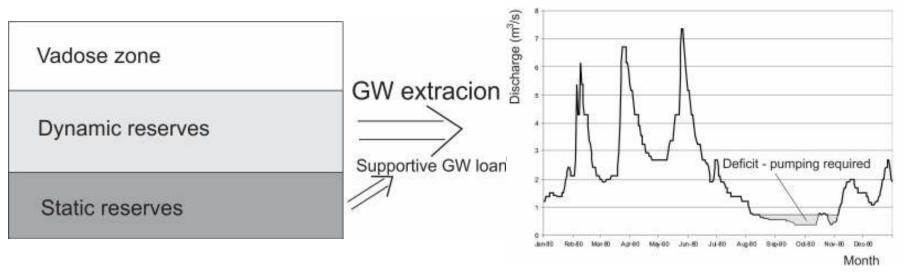
Montenegro coastal springs Q min:max 1:100.000 ?!

• Natural groundwater reserves of karst aquifer – dynamic & static (case with ascending spring Q1 and underground discharge Q2)



Exploitable reserves as total dynamic and part of static reserves but with controlled and limited usage:

Rare, but logical case


Qexp = Qdyn + n x Qst / T - WL

Temporary use of static waters is justifiable if replenishment potential is sufficient !

Contrary to arid areas where such approach often lead to aquifer over-exploitation, in SEE region the climatic and hydrogeological preconditions provide an adequate replenishment potential

The temporal loan of stored water when water demands are higher than natural discharge does not lead to over-extraction if sufficient replenishment potential exists. The issue of safe yield has been discussed in similar way in articles of Custodio (1992) or Burke & Moench (2000).

If
$$Q_{expl} > Q_{dyn}$$
, and

$$Q_{expl} = Q_{dyn} + Q_{st"loan"}$$
, then

$$\mathbf{Q}_{\mathrm{st"loan"}} = \mathbf{Q}_{\mathrm{expl}}$$
 - $\mathbf{Q}_{\mathrm{dyn}}$

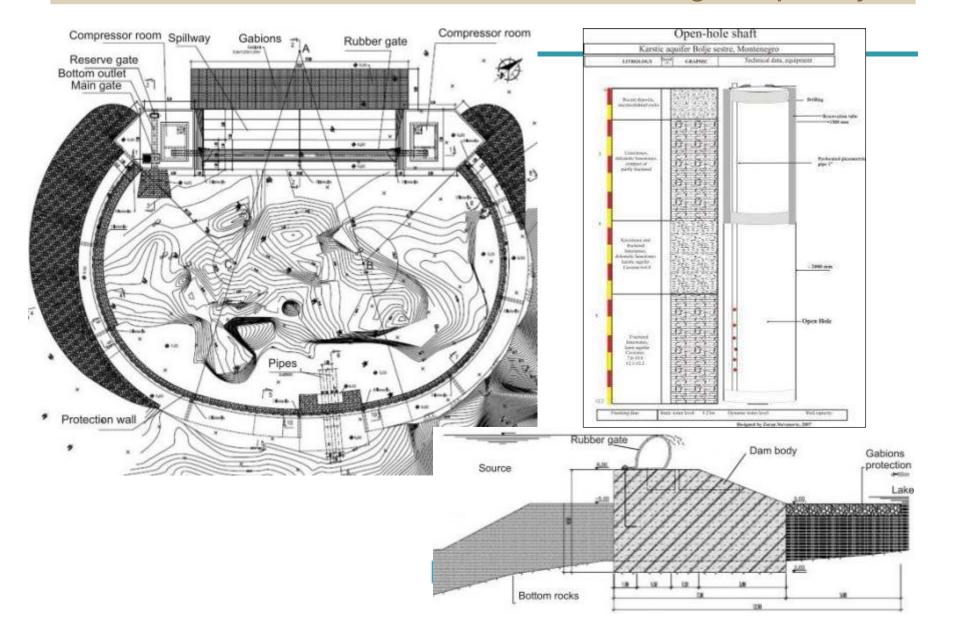
where,

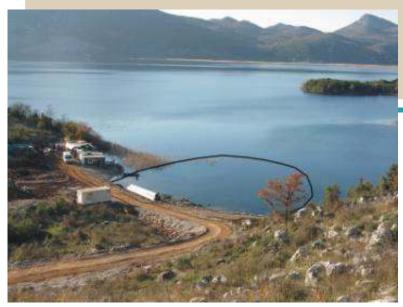
 Q_{expl} – Exploitation request, water demands; Q_{dyn} – Dynamic groundwater reserves; $Q_{st"loan"}$ – Static groundwater reserves for periodic loan (equal to difference between demands and natural flow).

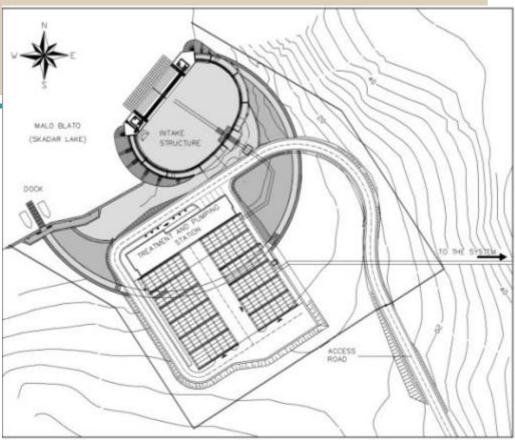
A successful project -New intake for Montenegro coast

- Sub lacustrian spring Bolje sestre in Skadar basin
- $Q_{min} = 2.3 \text{ m}^3/\text{s}$
- The total pipeline length is 140 km.
- The system is planned for a maximum capacity of 1.5 m³/s in two stages.
- The water discharges through several registered points near the shore.
- Order: Avoid mixture of water (fresh groundwater and lake)

DIFTAS


 Complex investigation programme included: hydrology, geophysical survey (geoelectric tomography and electromagnetic VLF method),drilling, tracing tests, hydrogeological mapping, diving, permanent sampling and analyses of the water quality (biological, chemical, radiological).





Specific intake - The concrete elliptical coffer dam covers an area of some 300 m² and has a rubber gate spillway

It confirmed a very small influence resulting in a maximum decrease in the level of the lake of less than 1cm under the extraction of $1.5 \text{ m}^3/\text{s}$ (Stevanovic et al. 2008)

SAP - Priority action 5 MAR

- To achieve the main objective the following activities should be undertaken:
- *A. 1. Preliminary selection.* The list of potentially suitable sites in Dinaric karst and in selected studied TB aquifers is provided by experts of WG1. The proposals come out after consultation with national authorities and other DIKTAS experts.
- *A. 2. Research.* Geological and hydrogeological surveys are carried out aiming at define catchment areas, thickness of the saturated zone of proposed sources, assess aquifer properties and above all aquifer's regime and storativity.
- *A. 3. Feasibility and initial design.* Out of all proposed sources, selection of two or three the most promising sources for engineering intervention is made and feasibility study and initial design of intake are prepared.
- *A. 4. Implementation.* Construction work, test and establishment of groundwater monitoring station (quantity and quality) including installation of an Early Warning System for prevention from pollution and guarantee of eco-flow.
- *A. 5. Publicity.* To minimize any negative effects of the proposed interventions along with undertaken survey and optimization of technical solutions, very careful explanation of the tasks and of the benefits to the local water managers and consumers is provided.

Local and international capacity building

International Course Characterization and Engineering of Karst Aquifers Trebinje, Bosnia & Herzegovina, 3-10 June, 2014

This course is supported by:

Trebinje , June 2014

Organizers:

 Department of Hydrogeology and Centre for Karst Hydrogeology of the University of Belgrade - The Faculty of Mining & Geology (<u>http://www.karstedu.rs</u>)

- The Geological Survey of the Republic of Srpska, Zvornik (Bosnia & Herzegovina) (<u>http://www.geozavodrs.com</u>)

other supporters:

- Department of Geological Sciences, The University of Texas at Austin, USA (<u>http://www.geotexas.edu</u>)
- Karst Commission of the IAH (International Association of Hydrogeologists (<u>http://www.iah.org/karst</u>)
- The Jaroslav Černi Institute for the Development of Water Resources (JCI) and its UNESCO's Category 2 Centre, Serbia (<u>http://www.jcerni.org</u>)
- IGRAC (International Groundwater Resources Assessment Centre), Delft, <u>The Netherlands (http://www.un-igrac.org</u>)
- Edwards Aquifer Authority, San Antonio, Texas, USA (<u>www.edwardsaquifer.org</u>)
- Speleological club "Zelena brda" (Green Fields), Trebinje, Bosnia & Herzegovina (<u>http://www.24casa.com/zelenabrda/contact.php</u>)

Curricilum

UNIVERSITY OF BELGRADE-FACULTY OF MINING AND GEOLOGY (FMG)

Republic of Serbia, Belgrade 11000, Djusina 7

Department : HYDROGEOLOGY

Level of Certified Studies: Master Study (MS in Hydrogeology)

Course: Characterization and Engineering of Karst Aquifers

Responsible Teacher / Assistant: Dr Zoran Stevanovic, Prof. / Dr Sasa Milanovic, Res. Ass.

Other lecturers: Other staff members of FMG, visiting professors and experts from country and abroad

Course status: Optional

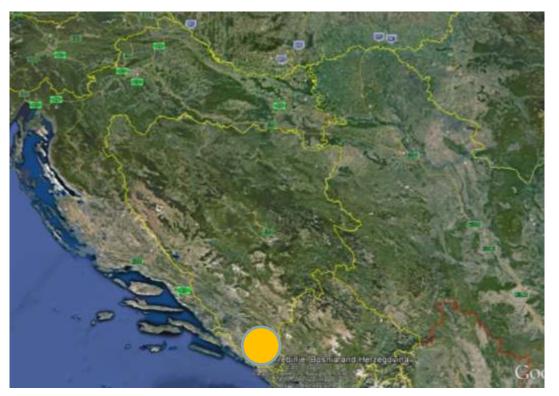
Usually offered: Spring Semester

Typical structure: 2 hours lecture, 2 hours practical exercise, discussion and work in the field

ESTC (credits as per European system): 6 (out of 30 per semester)

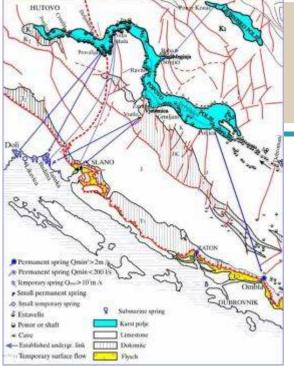
Prerequisite(s): Courses on undergraduate level

Grading: Regular : 6 (51-60 points), 7 (61-70), 8 (71-80), 9 (81-90), 10 (91-100)

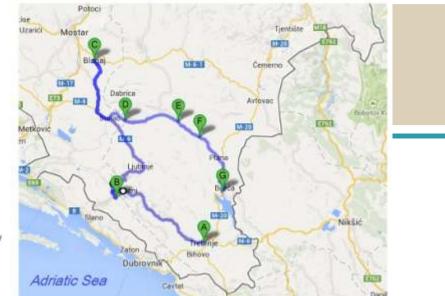

(Maximal points 100)									
Pre-exam activities	Max. Points	Final Exam	поена						
Lectures/Discussion	10	Test /	50						
Practical work	10	Oral							
Colloquium / Seminars	30								

Why Trebinje?

DIFTAS


63

Lecturers for the year 2014.


- Dr Zoran Stevanović, prof. FMG, University of Belgrade, Serbia
- Dr Neven Krešić, ex-prof. AMEC, USA
- Dr Petar Milanović, prof. ret., University of Mostar, Enregoproject, HET, Serbia
- Dr Ognjen Bonacci, prof. emeritus, University of Split, Croatia
- Dr Bartolome Navarro, prof. University of Malaga, Spain
- Dr Francesco Fiorillo, prof. University Sannio, Benevento, Italy
- Dr Neno Kukurić, UN-IGRAC, the Netherlands
- Dr Dragan Milovanović, prof. FMG, University of Belgrade, Serbia
- Dr Vesna Ristić Vakanjac, assoc. prof. FMG, University of Belgrade, Serbia
- Dr Saša Milanović, res. assoc. FMG, University of Belgrade, Serbia

University of Belgrade - Faculty of Mining & Geology, Belgrade Centre for Karst Hydrogeology of the Department of Hydrogeology

in cooperation with

Geological Survey of Republic of Srpska, Zvornik UNESCO GEF Project DIKTAS The Hydro-Energy System of Trebisnjica HET, Trebinje

Certificate of Attendance and Completion of the International Course

Characterization and Engineering of Karst Aquifers

to

Prof. Ivan Obradovic, Dean of the Faculty of Mining & Geology Prof Zoran Stevanovic, Head of the Centre for Karst Hydrogeology

held in Trebinje, Bosnia & Herzegovina, 3-10 June, 2014

This course has been organized and supported by:

21 participants from 11 countries7 days of teaching and field works13 students examined10 teachers from 6 countries

http://diktas.iwlearn.org

DITAS

Conclusions

- Although the Dinaric region has the most intensive water budget in all of Europe, there are numerous problems for sustainable utilization of GW. The main problem is the great annual variation of natural flows and the vulnerability of aquifers to pollution which comes mostly from still unregulated waste water discharges and solid wastes improper deposition.
- Tasks:
- to quantify the water reserves of transboundary aquifers,
- to apply engineering solutions to regulate aquifer discharges,
- to ensure ecological flows,
- to eliminate sources of pollution,
- to improve the quality of water, and
- to establish proper water monitoring systems,
- to learn more on karst and raise awareness of its resource importance!

http://diktas.iwlearn.org

Thank you!

http://diktas.iwlearn.org

